Biogasprojekte -Praktische Beispiele aus Afrika

Experience of Biogas Plant Building in Africa

(Slide in English/Presentation in German)

Dipl.-Ing. Guy Kabengele Consultant Biogas Technology / HTW-Berlin

Overview

- **>1.** Introduction;
- **>2.** Examples of Biogas Plant Projects;
- ≥3. Experiences & Lessons learned and
- ▶4. Conclusion

1 Introduction

Experiences in Africa context

as Designer, Constructer, Consultant or Backstopper

- ▶ Benin
- ▶ Burkina Faso
- ► Ghana
- ► Ivory Coast
- ► Kenya
- ► Lesotho
- ▶ Madagascar
- ▶ Marocco
- ▶ Sénégal
- ▶ Tanzanie
- ▶ Tunisie
- ▶ Uganda

Biogas Plant Engineering

BASIC CALCULATION

Biogas pla	ant for the t	reatment o	f sisal waste	•	
1. Main product, Su	ubstrates, l	nput quant	ity		
Total input:	65,0	t/d	TS-Content:	6,0%	
2. Energy from the	biogas				
Biogasproduction out sis	al waste		1.710	m³/d	
Brutto energy per day			10.774	kWh/d	
Brutto energy per year			3.932.419	kWh/a	
3. Gas utilisation by	y CHP				
	Energy efficiency	v	Power [kW]	Energy	//year [MWh/a]
El. Power generation	35,0%		171		1.371
Thermal process power	33,0%		160		1.280
4. Dimension of the	plant				
Fermenter volume		Retention time	е	Loading rat	e

DRAFT LAYOUT

.... Feasibility Study

....Installation, Supervision, Start-Up

....Commissioning, and Hand-over

Typical German biogasplant Installation EEG 2000-2017 Cow Dung/Corn Sillage in Schlalach (Brandenbourg)

Total capacity:

20 m³ / day cow manure and 0.2 t / day of corn silage

Settings:

Digester size: 1770 m³

CHP: 500 kW ele

Construction and Start-up:

September 2013 - July 2016

Tasks:

- Planning
- Design and construction
- Monitoring
- Technical and biological commissioning

Targets in International Projects

- Business Opportunity in new and emerging market;
- Engineering, Technology and Know-how transfer from Germany as
 - Large amount of "unused" organic waste available;
 - Untapped potential for renewable energy solutions;
 - Challenge on electrical supply or environmental aspects.

Example of organic waste "aboard" Sisal Producing Countries

Palm Oil Producing Countries

Global production of sisal fibre (2007)

- Brazil: 113,000 tons - China: 40,000 tons

- Tanzania: 37,000 tons - Kenya: 27,600 tons

- Venezuela: 10,500 tons - Madagascar: 9,000 tons

Other "exotic "organic wastes

- > Jatropha press cake;
- Brewery waste;
- ➤ POME;
- Cocao;
- > Cassava waste;
- > Flower waste;
- Kitchen Waste;
- > Fruit waste (Pineapple, Mango, Papaya,...)
- > Faecal sludge;
- ➤ Water hyacinth;
- > ...

2

Biogas Plants examples

1. Tanzania Katani- Sisal Biogas plant Hale

Total capacity:

65 m³ / day sisal waste

Settings:

Digester size: 2200 m³

CHP: 2x180 kW _{ele}

Construction& Start-up:

May 2006 - September 2007

Tasks:

- Planning
- Design and construction
- Monitoring
- Technical and biological commissioning

Sisal leaves Processing and Waste

Corona Processing

 The input material for fermentation process of the biogas plant is sisal liquid waste (sisal leaf waste + wash water).

Sisal leaves before, after processing and leaf waste

2. Burkina Faso Onea- Feacal sludge biogas plant in Ouagadougou

Total capacity:

Settings:

400 m³/d fecal sludge and

Digester size: $2,500 \text{ m}^3 + 1,500 \text{ m}^3$

5 t/d Jatropha press cake and (lagoon)

brewery waste water

CHP size: 1MW +100 kW_{ele}

Construction, Start-up and commissioning:

September 2015 - November 2019

Tasks:

- Design and planning assistance

- Surveillance during implementation

- Training assistance

Assistance at biological and technical start-up

Commissioning

3. Ghana
Nungua Farms- Feacal sludge biogas plant
at Great Accra

Total capacity:

1100 m³ /day fecal Sludge

-domestic septic tank,

-septic tank latrine and industrial waste

Settings:

Digester size: 2x3500 m³

CHP: 250 kW _{ele}

Construction& Start-up:

May 2018 - Ongoing

Tasks:

Consulting and technical support
 for Plant Design and components selections

Experiences & Lessons Learned

Some experiences (I)

During the plant installation:

- Problem with extreme weather (high temperature and rain);
- Often power outages;
- Purchase of materials on local market very expensive;
- Difficult to find skilled workers (welders and electricians)
 at jobsite surrounding;
- Sickness (Malaria).

Some experiences (II)

After the Start-up a. Handover:

- Waste quality and quantity varies a lot;
- Component sustainability (corrosion);
- Maintenance cycle and spare parts availability;
- Searching for biogas plant output valorization opportunity;
- Difficult negotiations with the authority about Feed-In tariff (lack of reference examples for implementation)

Lessons learned (I)

- Funding remains biggest problem:
- High capital investment,
- poor access to clean energy financing,
- very high interest rates on bank loans
- Reliable cooperation partners on site / network partners;
- Forecasting and anticipating additional activities to plant running:
- Long term Co-substrate contract,
- Market for fertilizer
- Timeline of project implementation;
- Less reference of existing industrial plants and experience exchange;
- Purchase of equipment on local market more expensive:
- Cost trap, Risk cost explosion in construction;

Lessons learned (II)

- Hard to find adequate staff and skilled workers and link them to the project:
 - Staff turnover very high
- Maintenance cycle and facilities management is not optimal;
- So far no model comparable to the EEG;
- Prioritized decentralized and Power Auto-consumption then difficult negotiations with grid operators

Deduction from the experience

Technology, Process, Economical, Management aspects

- Technology flexibility (Viability of some components):
- Select if possible regional/local supplier
- Maximizing biogas plant output valorization opportunity:
- Concept for effluent as Fertilizer,
- Heat/Cold conversion,
- Biogas supply at Workers beside Electricity to the grid/Auto-consumption;
- Plant operating with client over Hand-over period and training phase;
- Outreach with Keys-players to remove ambiguities and reluctance;
- Involvement in discussions with banks for credit lines;
- ► "B.O.T."Model;
- Interdisciplinary team.

4 Conclusion

Conclusion

- Go ahead and have a try;
- ► Enough documentations, pre and feasibility study available;
- People are looking for solution to improve the actual status;
- Mostly welcome, expected with an open arms and warmly received,
- Long term relationship and support (joint venture, Branch office).
- Flexible claims, thinking structure and technology and
- Have long breath, be patient, and at the end of the day it usually looks better than it started.

Hochschule für Technik und Wirtschaft Berlin

University of Applied Sciences

FB1 Environmental Technology / Renewable Energy Wilhelminenhofstr. 75A, D-12459 Berlin

Telefon +49 30 5019-3384 Telefax +49 30 5019-2115

E-Mail: <u>kabenge@htw-berlin.de</u>

Internet: www.htw-berlin.de